Answered

At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

A wheel rotates about a fixed axis with a constant angular acceleration of 3.3 rad/s2. The diameter of the wheel is 21 cm. What is the linear speed (in m/s) of a point on the rim of this wheel at an instant when that point has a total linear acceleration with a magnitude of 1.7 m/s2

Sagot :

Answer:

The the linear speed (in m/s) of a point on the rim of this wheel at an instant=0.418 m/s

Explanation:

We are given that

Angular acceleration, [tex]\alpha=3.3 rad/s^2[/tex]

Diameter of the wheel, d=21 cm

Radius of wheel, [tex]r=\frac{d}{2}=\frac{21}{2}[/tex] cm

Radius of wheel, [tex]r=\frac{21\times 10^{-2}}{2} m[/tex]

1m=100 cm

Magnitude of total linear acceleration, a=[tex]1.7 m/s^2[/tex]

We have to find the linear speed  of a  at an instant when that point has a total linear acceleration with a magnitude of 1.7 m/s2.

Tangential acceleration,[tex]a_t=\alpha r[/tex]

[tex]a_t=3.3\times \frac{21\times 10^{-2}}{2}[/tex]

[tex]a_t=34.65\times 10^{-2}m/s^2[/tex]

Radial acceleration,[tex]a_r=\frac{v^2}{r}[/tex]

We know that

[tex]a=\sqrt{a^2_t+a^2_r}[/tex]

Using the formula

[tex]1.7=\sqrt{(34.65\times 10^{-2})^2+(\frac{v^2}{r})^2}[/tex]

Squaring on both sides

we get

[tex]2.89=1200.6225\times 10^{-4}+\frac{v^4}{r^2}[/tex]

[tex]\frac{v^4}{r^2}=2.89-1200.6225\times 10^{-4}[/tex]

[tex]v^4=r^2\times 2.7699[/tex]

[tex]v^4=(10.5\times 10^{-2})^2\times 2.7699[/tex]

[tex]v=((10.5\times 10^{-2})^2\times 2.7699)^{\frac{1}{4}}[/tex]

[tex]v=0.418 m/s[/tex]

Hence, the the linear speed (in m/s) of a point on the rim of this wheel at an instant=0.418 m/s