Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Given:
The expression is:
[tex]2x^3+mx^2+nx+c[/tex]
It leaves the same remainder when divided by x -2 or by x+1.
To prove:
[tex]m+n=-6[/tex]
Solution:
Remainder theorem: If a polynomial P(x) is divided by (x-c), thent he remainder is P(c).
Let the given polynomial is:
[tex]P(x)=2x^3+mx^2+nx+c[/tex]
It leaves the same remainder when divided by x -2 or by x+1. By using remainder theorem, we can say that
[tex]P(2)=P(-1)[/tex] ...(i)
Substituting [tex]x=-1[/tex] in the given polynomial.
[tex]P(-1)=2(-1)^3+m(-1)^2+n(-1)+c[/tex]
[tex]P(-1)=-2+m-n+c[/tex]
Substituting [tex]x=2[/tex] in the given polynomial.
[tex]P(2)=2(2)^3+m(2)^2+n(2)+c[/tex]
[tex]P(2)=2(8)+m(4)+2n+c[/tex]
[tex]P(2)=16+4m+2n+c[/tex]
Now, substitute the values of P(2) and P(-1) in (i), we get
[tex]16+4m+2n+c=-2+m-n+c[/tex]
[tex]16+4m+2n+c+2-m+n-c=0[/tex]
[tex]18+3m+3n=0[/tex]
[tex]3m+3n=-18[/tex]
Divide both sides by 3.
[tex]\dfrac{3m+3n}{3}=\dfrac{-18}{3}[/tex]
[tex]m+n=-6[/tex]
Hence proved.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.