Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Given that the expression 2x^3 + mx^2 + nx + c leaves the same remainder when divided by x -2 or by x+1 I prove that m+n =-6

Sagot :

Given:

The expression is:

[tex]2x^3+mx^2+nx+c[/tex]

It leaves the same remainder when divided by x -2 or by x+1.

To prove:

[tex]m+n=-6[/tex]

Solution:

Remainder theorem: If a polynomial P(x) is divided by (x-c), thent he remainder is P(c).

Let the given polynomial is:

[tex]P(x)=2x^3+mx^2+nx+c[/tex]

It leaves the same remainder when divided by x -2 or by x+1. By using remainder theorem, we can say that

[tex]P(2)=P(-1)[/tex]              ...(i)

Substituting [tex]x=-1[/tex] in the given polynomial.

[tex]P(-1)=2(-1)^3+m(-1)^2+n(-1)+c[/tex]

[tex]P(-1)=-2+m-n+c[/tex]

Substituting [tex]x=2[/tex] in the given polynomial.

[tex]P(2)=2(2)^3+m(2)^2+n(2)+c[/tex]

[tex]P(2)=2(8)+m(4)+2n+c[/tex]

[tex]P(2)=16+4m+2n+c[/tex]

Now, substitute the values of P(2) and P(-1) in (i), we get

[tex]16+4m+2n+c=-2+m-n+c[/tex]

[tex]16+4m+2n+c+2-m+n-c=0[/tex]

[tex]18+3m+3n=0[/tex]

[tex]3m+3n=-18[/tex]

Divide both sides by 3.

[tex]\dfrac{3m+3n}{3}=\dfrac{-18}{3}[/tex]

[tex]m+n=-6[/tex]

Hence proved.