Answer:
7.9 [tex]\frac{m}{s^{2} }[/tex]
Explanation:
Take the fact that mass is inversely proportional to accelertation:
m ∝ a
Therefore m = a, but because we are finding the change in acceleration, we would set our problem up to look more like this:
[tex]\frac{m_{1} }{m_{2} } = \frac{a_{2} }{a_{1} } \\[/tex]
Using algebra, we can rearrange our equation to find the final acceleration, [tex]a_{2}[/tex]:
[tex]a_{2} = \frac{a_{1}*m_{1} }{m_{2} } \\[/tex]
Before plugging everything in, since you are being asked to find acceleration, you will want to convert 0.85g to m/s^2. To do this, multiply by g, which is equal to 9.8 m/s^2:
0.85g * 9.8 [tex]\frac{m }{s^{2} }[/tex] = 8.33 [tex]\frac{m }{s^{2} }[/tex]
Plug everything in:
7.9 [tex]\frac{m }{s^{2} }[/tex] = [tex]\frac{ 8.33\frac{m}{s^{2} }*1510kg }{1590kg}[/tex]
(1590kg the initial weight plus the weight of the added passenger)