Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
The function that passes through (0, 0) is [tex]f(x) = \frac{1}{6}\cdot e^{2\cdot x^{3}} - \frac{1}{6}[/tex].
Step-by-step explanation:
Firstly, we integrate the function by algebraic substitution:
[tex]\int {x^{2}\cdot e^{2\cdot x^{3}}} \, dx[/tex] (1)
If [tex]u = 2\cdot x^{3}[/tex] and [tex]du = 6\cdot x^{2} dx[/tex], then:
[tex]\int {e^{2\cdot x^{3}}\cdot x^{2}} \, dx[/tex]
[tex]\frac{1}{6}\int {e^{u}} \, du[/tex]
[tex]f(u) = \frac{1}{6}\cdot e^{u} + C[/tex]
[tex]f(x) = \frac{1}{6}\cdot e^{2\cdot x^{3}} + C[/tex]
Where [tex]C[/tex] is the integration constant.
If [tex]x = 0[/tex] and [tex]f(0) = 0[/tex], then the integration constant is:
[tex]\frac{1}{6}\cdot e^{2\cdot 0^{3}} + C= 0[/tex]
[tex]C = -\frac{1}{6}[/tex]
Hence, the function that passes through (0, 0) is [tex]f(x) = \frac{1}{6}\cdot e^{2\cdot x^{3}} - \frac{1}{6}[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.