Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
The function that passes through (0, 0) is [tex]f(x) = \frac{1}{6}\cdot e^{2\cdot x^{3}} - \frac{1}{6}[/tex].
Step-by-step explanation:
Firstly, we integrate the function by algebraic substitution:
[tex]\int {x^{2}\cdot e^{2\cdot x^{3}}} \, dx[/tex] (1)
If [tex]u = 2\cdot x^{3}[/tex] and [tex]du = 6\cdot x^{2} dx[/tex], then:
[tex]\int {e^{2\cdot x^{3}}\cdot x^{2}} \, dx[/tex]
[tex]\frac{1}{6}\int {e^{u}} \, du[/tex]
[tex]f(u) = \frac{1}{6}\cdot e^{u} + C[/tex]
[tex]f(x) = \frac{1}{6}\cdot e^{2\cdot x^{3}} + C[/tex]
Where [tex]C[/tex] is the integration constant.
If [tex]x = 0[/tex] and [tex]f(0) = 0[/tex], then the integration constant is:
[tex]\frac{1}{6}\cdot e^{2\cdot 0^{3}} + C= 0[/tex]
[tex]C = -\frac{1}{6}[/tex]
Hence, the function that passes through (0, 0) is [tex]f(x) = \frac{1}{6}\cdot e^{2\cdot x^{3}} - \frac{1}{6}[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.