Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
Relative minimum: [tex]\left(-\frac{5}{2}, -\frac{33}{4}\right)[/tex], Relative maximum: [tex]DNE[/tex]
Step-by-step explanation:
First, we obtain the First and Second Derivatives of the polynomic function:
First Derivative
[tex]f'(x) = 2\cdot x + 5[/tex] (1)
Second Derivative
[tex]f''(x) = 2[/tex] (2)
Now, we proceed with the First Derivative Test on (1):
[tex]2\cdot x + 5 = 0[/tex]
[tex]x = -\frac{5}{2}[/tex]
The critical point is [tex]-\frac{5}{2}[/tex].
As the second derivative is a constant function, we know that critical point leads to a minimum by Second Derivative Test, since [tex]f\left(-\frac{5}{2}\right) > 0[/tex].
Lastly, we find the remaining component associated with the critical point by direct evaluation of the function:
[tex]f\left(-\frac{5}{2} \right) = \left(-\frac{5}{2} \right)^{2} + 5\cdot \left(-\frac{5}{2} \right) - 2[/tex]
[tex]f\left(-\frac{5}{2} \right) = -\frac{33}{4}[/tex]
There are relative maxima.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.