At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
[tex]-\sqrt{2} \le m \le \sqrt{2}[/tex] would ensure that at least one real root exists for this equation when solving for [tex]x[/tex].
Step-by-step explanation:
Apply the Pythagorean identity [tex]1 - \sin^{2}(x) = \cos^{2}(x)[/tex] to replace the cosine this equation with sine:
[tex](1 - \sin^{2}(x)) - (m^2 - 3)\, \sin(x) + 2\, m^2 - 3 = 0[/tex].
Multiply both sides by [tex](-1)[/tex] to obtain:
[tex]-1 + \sin^{2}(x) + (m^2 - 3)\, \sin(x) - 2\, m^2 + 3 = 0[/tex].
[tex]\sin^{2}(x) + (m^2 - 3)\, \sin(x) - 2\, m^2 + 2 = 0[/tex].
If [tex]y = \sin(x)[/tex], then this equation would become a quadratic equation about [tex]y[/tex]:
[tex]y^{2} + (m^2 - 3)\, y + (- 2\, m^2 + 2) = 0[/tex].
- [tex]a = 1[/tex].
- [tex]b = m^{2} - 3[/tex].
- [tex]c = -2\, m^{2} + 2[/tex].
However, [tex]-1 \le \sin(x) \le 1[/tex] for all real [tex]x[/tex].
Hence, the value of [tex]y[/tex] must be between [tex](-1)[/tex] and [tex]1[/tex] (inclusive) for the original equation to have a real root when solving for [tex]x[/tex].
Determinant of this quadratic equation about [tex]y[/tex]:
[tex]\begin{aligned} & b^{2} - 4\, a\, c \\ =\; & (m^{2} - 3)^{2} - 4 \cdot (-2\, m^{2} + 2) \\ =\; & m^{4} - 6\, m^{2} + 9 - (-8\, m^{2} + 8) \\ =\; & m^{4} - 6\, m^{2} + 9 + 8\, m^{2} - 8 \\ =\; & m^{4} + 2\, m^{2} + 1 \\ =\; &(m^2 + 1)^{2} \end{aligned}[/tex].
Hence, when solving for [tex]y[/tex], the roots of [tex]y^{2} + (m^2 - 3)\, y + (- 2\, m^2 + 2) = 0[/tex] in terms of [tex]m[/tex] would be:
[tex]\begin{aligned}y_1 &= \frac{-b + \sqrt{b^{2} - 4\, a\, c}}{2\, a} \\ &= \frac{-(m^{2} - 3) + \sqrt{(m^{2} + 1)^{2}}}{2} \\ &= \frac{-(m^{2} - 3) + (m^{2} + 1)}{2} = 2\end{aligned}[/tex].
[tex]\begin{aligned}y_2 &= \frac{-b - \sqrt{b^{2} - 4\, a\, c}}{2\, a} \\ &= \frac{-(m^{2} - 3) - \sqrt{(m^{2} + 1)^{2}}}{2} \\ &= \frac{-(m^{2} - 3) - (m^{2} + 1)}{2} \\ &= \frac{-2\, m^{2} + 2}{2} = -m^{2} + 1\end{aligned}[/tex].
Since [tex]y = \sin(x)[/tex], it is necessary that [tex]-1 \le y \le 1[/tex] for the original solution to have a real root when solved for [tex]x[/tex].
The first solution, [tex]y_1[/tex], does not meet the requirements. On the other hand, simplifying [tex]-1 \le y_2 \le 1[/tex], [tex]-1 \le -m^{2} + 1 \le 1[/tex] gives:
[tex]-2 \le -m^{2} \le 0[/tex].
[tex]0 \le m^{2} \le 2[/tex].
[tex]-\sqrt{2} \le m \le \sqrt{2}[/tex].
In other words, solving [tex]y^{2} + (m^2 - 3)\, y + (- 2\, m^2 + 2) = 0[/tex] for [tex]y[/tex] would give a real root between [tex]-1 \le y \le 1[/tex] if and only if [tex]-\sqrt{2} \le m \le \sqrt{2}[/tex].
On the other hand, given that [tex]y = \sin(x)[/tex] for the [tex]x[/tex] in the original equation, solving that equation for [tex]x\![/tex] would give a real root if and only if [tex]-1 \le y \le 1[/tex].
Therefore, the original equation with [tex]x[/tex] as the unknown has a real root if and only if [tex]-\sqrt{2} \le m \le \sqrt{2}[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.