Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
[tex]-\sqrt{2} \le m \le \sqrt{2}[/tex] would ensure that at least one real root exists for this equation when solving for [tex]x[/tex].
Step-by-step explanation:
Apply the Pythagorean identity [tex]1 - \sin^{2}(x) = \cos^{2}(x)[/tex] to replace the cosine this equation with sine:
[tex](1 - \sin^{2}(x)) - (m^2 - 3)\, \sin(x) + 2\, m^2 - 3 = 0[/tex].
Multiply both sides by [tex](-1)[/tex] to obtain:
[tex]-1 + \sin^{2}(x) + (m^2 - 3)\, \sin(x) - 2\, m^2 + 3 = 0[/tex].
[tex]\sin^{2}(x) + (m^2 - 3)\, \sin(x) - 2\, m^2 + 2 = 0[/tex].
If [tex]y = \sin(x)[/tex], then this equation would become a quadratic equation about [tex]y[/tex]:
[tex]y^{2} + (m^2 - 3)\, y + (- 2\, m^2 + 2) = 0[/tex].
- [tex]a = 1[/tex].
- [tex]b = m^{2} - 3[/tex].
- [tex]c = -2\, m^{2} + 2[/tex].
However, [tex]-1 \le \sin(x) \le 1[/tex] for all real [tex]x[/tex].
Hence, the value of [tex]y[/tex] must be between [tex](-1)[/tex] and [tex]1[/tex] (inclusive) for the original equation to have a real root when solving for [tex]x[/tex].
Determinant of this quadratic equation about [tex]y[/tex]:
[tex]\begin{aligned} & b^{2} - 4\, a\, c \\ =\; & (m^{2} - 3)^{2} - 4 \cdot (-2\, m^{2} + 2) \\ =\; & m^{4} - 6\, m^{2} + 9 - (-8\, m^{2} + 8) \\ =\; & m^{4} - 6\, m^{2} + 9 + 8\, m^{2} - 8 \\ =\; & m^{4} + 2\, m^{2} + 1 \\ =\; &(m^2 + 1)^{2} \end{aligned}[/tex].
Hence, when solving for [tex]y[/tex], the roots of [tex]y^{2} + (m^2 - 3)\, y + (- 2\, m^2 + 2) = 0[/tex] in terms of [tex]m[/tex] would be:
[tex]\begin{aligned}y_1 &= \frac{-b + \sqrt{b^{2} - 4\, a\, c}}{2\, a} \\ &= \frac{-(m^{2} - 3) + \sqrt{(m^{2} + 1)^{2}}}{2} \\ &= \frac{-(m^{2} - 3) + (m^{2} + 1)}{2} = 2\end{aligned}[/tex].
[tex]\begin{aligned}y_2 &= \frac{-b - \sqrt{b^{2} - 4\, a\, c}}{2\, a} \\ &= \frac{-(m^{2} - 3) - \sqrt{(m^{2} + 1)^{2}}}{2} \\ &= \frac{-(m^{2} - 3) - (m^{2} + 1)}{2} \\ &= \frac{-2\, m^{2} + 2}{2} = -m^{2} + 1\end{aligned}[/tex].
Since [tex]y = \sin(x)[/tex], it is necessary that [tex]-1 \le y \le 1[/tex] for the original solution to have a real root when solved for [tex]x[/tex].
The first solution, [tex]y_1[/tex], does not meet the requirements. On the other hand, simplifying [tex]-1 \le y_2 \le 1[/tex], [tex]-1 \le -m^{2} + 1 \le 1[/tex] gives:
[tex]-2 \le -m^{2} \le 0[/tex].
[tex]0 \le m^{2} \le 2[/tex].
[tex]-\sqrt{2} \le m \le \sqrt{2}[/tex].
In other words, solving [tex]y^{2} + (m^2 - 3)\, y + (- 2\, m^2 + 2) = 0[/tex] for [tex]y[/tex] would give a real root between [tex]-1 \le y \le 1[/tex] if and only if [tex]-\sqrt{2} \le m \le \sqrt{2}[/tex].
On the other hand, given that [tex]y = \sin(x)[/tex] for the [tex]x[/tex] in the original equation, solving that equation for [tex]x\![/tex] would give a real root if and only if [tex]-1 \le y \le 1[/tex].
Therefore, the original equation with [tex]x[/tex] as the unknown has a real root if and only if [tex]-\sqrt{2} \le m \le \sqrt{2}[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.