Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
Please find attached the graph of the function created with MS Excel showing the relevant points required to draw an approximate graph of the function on a graph paper
Step-by-step explanation:
The given quadratic function is f(x) = -2·x² + 7·x + 4
The range of the input (x) values = -1 ≤ x ≤ 5
The coefficient of the quadratic is negative -2, the graph is n shape
The intercept form of the function is given as follows;
-2·x² + 7·x + 4 = -1 × (2·x² - 7·x - 4)
-1 × (2·x² - 7·x - 4) = -1 × (2·x² + x - 8·x - 4)
-1 × (2·x² + x - 8·x - 4) = -1 × (x · (2·x + 1) - 4·(2·x + 1))
∴ -1 × (x · (2·x + 1) - 4·(2·x + 1)) = -1 × (2·x + 1)·(x - 4)
∴ f(x) = -2·x² + 7·x + 4 = -1 × (2·x + 1)·(x - 4)
At the x-intercepts, (2·x + 1) = 0 or (x - 4) = 0, which gives;
x = -1/2 or x = 4
Therefore, the x-intercepts are (-1/2, 0), (4, 0)
The equation in vertex form is given as follows;
f(x) = -2·x² + 7·x + 4 = -2·(x² - 7·x/2 + 2)
By applying completing the squares method, to x² - 7·x/2 - 2, we get;
Where x² - 7·x/2 - 2
x² - 7·x/2 = 2
x² - 7·x/2 + (-7/4)² = 2 + (-7/4)² = 81/15
(x - 7/4)² = 81/16
∴ (x - 7/4)² - 81/16 = 0 = x² - 7·x/2 - 2
∴ x² - 7·x/2 - 2 = (x - 7/4)² - 81/16
-2·(x² - 7·x/2 + 2) = -2·((x - 7/4)² - 81/16) = -2·(x - 7/4)² + 81/8
The vertex = (7/4, 81/8)
When x = 0, we get;
f(0) = -2 × 0² + 7 × 0 + 4 = 4
The y-intercept = (0, 4)
The sketch of the function should pass through the x-intercepts (-1/2, 0), (4, 0), the y-intercept (0, 4), and the y-intercept (0, 4), and the vertex, (7/4, 81/8) on a graph sheet
Please find attached a drawing of the function of the function created with MS Excel
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.