Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

One urn contains 6 blue balls and 14 white balls, and a second urn contains 12 blue balls and 7 white balls. An urn is selected at random, and a ball is chosen from the urn. a. What is the probability that the chosen ball is blue? b. If the chosen ball is blue, what is the probability that it came from the first urn?

Sagot :

Answer:

a) 0.4658 = 46.58% probability that the chosen ball is blue

b) 0.322 = 32.2% probability that it came from the first urn

Step-by-step explanation:

A probability is the number of desired outcomes divided by the number of total outcomes.

Conditional Probability

We use the conditional probability formula to solve this question. It is

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]

In which

P(B|A) is the probability of event B happening, given that A happened.

[tex]P(A \cap B)[/tex] is the probability of both A and B happening.

P(A) is the probability of A happening.

a. What is the probability that the chosen ball is blue?

6/20 = 0.3 of 0.5(first urn)

12/19 = 0.6316 out of 0.5(second urn).

So

[tex]P(A) = 0.3*0.5 + 0.6316*0.5 = 0.4658[/tex]

0.4658 = 46.58% probability that the chosen ball is blue.

b. If the chosen ball is blue, what is the probability that it came from the first urn?

Event A: Blue Ball

Event B: From first urn

From item a., [tex]P(A) = 0.4658[/tex]

Probability of blue ball from first urn:

0.3 of 0.5. So

[tex]P(A \cap B) = 0.3*0.5 = 0.15[/tex]

Probability:

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.15}{0.4658} = 0.322[/tex]

0.322 = 32.2% probability that it came from the first urn

We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.