Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
a) 0.4658 = 46.58% probability that the chosen ball is blue
b) 0.322 = 32.2% probability that it came from the first urn
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
a. What is the probability that the chosen ball is blue?
6/20 = 0.3 of 0.5(first urn)
12/19 = 0.6316 out of 0.5(second urn).
So
[tex]P(A) = 0.3*0.5 + 0.6316*0.5 = 0.4658[/tex]
0.4658 = 46.58% probability that the chosen ball is blue.
b. If the chosen ball is blue, what is the probability that it came from the first urn?
Event A: Blue Ball
Event B: From first urn
From item a., [tex]P(A) = 0.4658[/tex]
Probability of blue ball from first urn:
0.3 of 0.5. So
[tex]P(A \cap B) = 0.3*0.5 = 0.15[/tex]
Probability:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.15}{0.4658} = 0.322[/tex]
0.322 = 32.2% probability that it came from the first urn
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.