Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Division yields
[tex]\dfrac{x^4+7}{x^3+2x} = x-\dfrac{2x^2-7}{x^3+2x}[/tex]
Now for partial fractions: you're looking for constants a, b, and c such that
[tex]\dfrac{2x^2-7}{x(x^2+2)} = \dfrac ax + \dfrac{bx+c}{x^2+2}[/tex]
[tex]\implies 2x^2 - 7 = a(x^2+2) + (bx+c)x = (a+b)x^2+cx + 2a[/tex]
which gives a + b = 2, c = 0, and 2a = -7, so that a = -7/2 and b = 11/2. Then
[tex]\dfrac{2x^2-7}{x(x^2+2)} = -\dfrac7{2x} + \dfrac{11x}{2(x^2+2)}[/tex]
Now, in the integral we get
[tex]\displaystyle\int\frac{x^4+7}{x^3+2x}\,\mathrm dx = \int\left(x+\frac7{2x} - \frac{11x}{2(x^2+2)}\right)\,\mathrm dx[/tex]
The first two terms are trivial to integrate. For the third, substitute y = x ² + 2 and dy = 2x dx to get
[tex]\displaystyle \int x\,\mathrm dx + \frac72\int\frac{\mathrm dx}x - \frac{11}4 \int\frac{\mathrm dy}y \\\\ =\displaystyle \frac{x^2}2+\frac72\ln|x|-\frac{11}4\ln|y| + C \\\\ =\displaystyle \boxed{\frac{x^2}2 + \frac72\ln|x| - \frac{11}4 \ln(x^2+2) + C}[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.