Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Solution :
[tex]\text{Short forward = buy a put + short a call on the same stock}[/tex] with the same exercise price.
X = exercise price = 50
1). Position to be taken :
-- buy 10 numbers of Put options with strike price of $ 50 per unit.
--- short (sell) 10 numbers of Call option with strike price of $ 50 per unit.
2). Cost of synthetic short position = [tex]$10 \times (P-C)$[/tex],
where, P = price of 1 put ption
C = price of 1 call option
The Call - Put parity equation :
[tex]$\frac{C+X}{(1+r)^t}=S_0+P$[/tex]
Here, C = Call premium
X = strike price of call and Put
r = annual rate of interest
t = time in years
[tex]$S_0$[/tex] = initial price of underlying
P = Put premium
Therefore,
[tex]$P-C=PV(X)-S_0=\frac{X}{(1+r)^t}-S_0$[/tex]
Here, t = 1, [tex]S_0[/tex] = 48, X = 50
So the cost of the position is given as : [tex]$\frac{50}{(1+r)} -48$[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.