Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
The value of the standard error for the point estimate is of 0.0392.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
In a randomly selected sample of 100 students at a University, 81 of them had access to a computer at home.
This means that [tex]n = 100, p = \frac{81}{100} = 0.81[/tex]
Give the value of the standard error for the point estimate.
This is s. So
[tex]s = \sqrt{\frac{0.81*0.19}{100}} = 0.0392[/tex]
The value of the standard error for the point estimate is of 0.0392.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.