Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Observe that
5/12 = 1/4 + 1/6
so that
tan(5π/12) = tan(π/4 + π/6)
Then
tan(5π/12) = sin(π/4 + π/6) / cos(π/4 + π/6)
… = (sin(π/4) cos(π/6) + cos(π/4) sin(π/6)) / (cos(π/4) cos(π/6) - sin(π/4) sin(π/6))
… = (cos(π/6) + sin(π/6)) / (cos(π/6) - sin(π/6))
(since sin(π/4) = cos(π/4) = 1/√2)
… = (√3/2 + 1/2) / (√3/2 - 1/2)
… = (√3 + 1) / (√3 - 1)
… = (√3 + 1) / (√3 - 1) × (√3 + 1) / (√3 + 1)
… = (√3 + 1)² / ((√3)² - 1²)
… = ((√3)² + 2√3 + 1²) / (3 - 1)
… = (3 + 2√3 + 1) / 2
… = (4 + 2√3) / 2
… = 2 + √3 … … … (C)
If you insist on using the half-angle identity, recall that
sin²(x) = (1 - cos(2x))/2
cos²(x) = (1 + cos(2x))/2
==> tan²(x) = (1 - cos(2x)) / (1 + cos(2x))
Let x = 5π/12. The angle x lies in the first quadrant, so we know tan(x) is positive.
==> tan(x) = +√[(1 - cos(2x)) / (1 + cos(2x))]
We also know
cos(2x) = cos(5π/6) = -√3/2
which means
tan(x) = tan(5π/12) = √[(1 - (-√3/2)) / (1 + (-√3/2))]
… = √[(1 + √3/2) / (1 - √3/2)]
… = √[(2 + √3) / (2 - √3)]
… = √[(2 + √3) / (2 - √3) × (2 + √3) / (2 + √3)]
… = √[(2 + √3)² / (2² - (√3)²)]
… = √[(2 + √3)² / (4 - 3)]
… = √[(2 + √3)²]
… = 2 + √3
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.