Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

SCALCET8 3.9.005.MI. A cylindrical tank with radius 5 m is being filled with water at a rate of 4 m3/min. How fast is the height of the water increasing

Sagot :

Answer:

The height of the water is increasing at a rate of 0.05m/min.

Step-by-step explanation:

Volume of a cylinder:

The volume of a cylinder, with radius r and height h, is given by:

[tex]V = \pi r^2h[/tex]

Radius 5 m

This means that [tex]r = 5[/tex], and so:

[tex]V = 25\pi h[/tex]

How fast is the height of the water increasing?

We have to differentiate V and h implictly in function of t. So

[tex]\frac{dV}{dt} = 25\pi\frac{dh}{dt}[/tex]

Being filled with water at a rate of 4 m3/min

This means that [tex]\frac{dV}{dt} = 4[/tex]. The questions asks [tex]\frac{dh}{dt}[/tex]. So

[tex]\frac{dV}{dt} = 25\pi\frac{dh}{dt}[/tex]

[tex]4 = 25\pi\frac{dh}{dt}[/tex]

[tex]\frac{dh}{dt} = \frac{4}{25\pi}[/tex]

[tex]\frac{dh}{dt} = 0.05[/tex]

The height of the water is increasing at a rate of 0.05m/min.