Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
2.-P = 0.38
3.-P [ Lb | Wt ] = 0.788
Step-by-step explanation:
1.-Probability of choosing any box is, 1/3. So the probability of choosing the lucky box is 1/3
Let´s say the lucky box is the number 2 box ( that consideration does not in any way change the problem generality)
Then we have
p₁ probability of choosing box 1 is 1/3 p₁´ Probability of win ticket is 0.12
p₂ probability of choosing box 2 is 1/3 p₂´Probability of win ticket is 0.90
p₃ probability of choosing box 3 is 1/3 p₃´ Probability of win ticket is 0.12
Then
P (of choosing a winning ticket is) = p₁*p₁´ + p₂*p₂´ + p₃*p₃´
P = 1/3*0.12 + 1/3*0.9 + 1/3*0.12
P = 0.04 + 0.3 + 0.04
P = 0.38
3.- if I draw a winning ticket what is the probability it came from Lucky box
According to Bayes theorem
P [ Lb | Wt ] = P(Lb) * P[ Wt|Lb]/ P(Wt)
P(Lb) = 1/3 = 0.33333
P[Wt|Lb] = 0.9
P(Wt) = 0.38
Then By substitution
P [ Lb | Wt ] = 0.333 * 0.9 / 0.38
P [ Lb | Wt ] = 0.788
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.