Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
1) 0.6838
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
35.45% of small businesses experience cash flow problems in their first 5 years.
This means that [tex]p = 0.3545[/tex]
Sample of 530 businesses
This means that [tex]n = 530[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.3545[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.3545(1-0.3545)}{530}} = 0.0208[/tex]
What is the probability that between 34.2% and 39.03% of the businesses have experienced cash flow problems?
This is the p-value of Z when X = 0.3903 subtracted by the p-value of Z when X = 0.342.
X = 0.3903
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.3903 - 0.3545}{0.0208}[/tex]
[tex]Z = 1.72[/tex]
[tex]Z = 1.72[/tex] has a p-value of 0.9573
X = 0.342
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.342 - 0.3545}{0.0208}[/tex]
[tex]Z = -0.6[/tex]
[tex]Z = -0.6[/tex] has a p-value of 0.27425
0.9573 - 0.2743 = 0.683
With a little bit of rounding, 0.6838, so option 1) is the answer.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.