Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

There are four different colored balls in a bag. There is equal probability of selecting the red, black, green, or blue ball.What is the expected value of getting a green ball out of 20 experiments with replacement?

Sagot :

Answer:

The expected value is of 5 green balls.

Step-by-step explanation:

For each experiment, there are only two possible outcomes. Either it is a green ball, or it is not. Since there is replacement, the probability of a green ball being taken in an experiment is independent of any other experiments, which means that the binomial probability distribution is used to solve this question.

Binomial probability distribution

Probability of exactly x successes on n repeated trials, with p probability.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

20 experiments

This means that [tex]n = 20[/tex]

There is equal probability of selecting the red, black, green, or blue ball.

This means that 1 in 4 are green, so [tex]p = \frac{1}{4} = 0.25[/tex]

What is the expected value of getting a green ball out of 20 experiments with replacement?

[tex]E(X) = np = 20*0.25 = 5[/tex]

The expected value is of 5 green balls.

The expected value of getting a green ball out of 20 experiments with replacement is 5.

What is a binomial distribution?

The binomial probability distribution of the number of successes in a sequence of n independent experiments is the binomial distribution with parameters n and p.

As it is given that the probability of all the balls coming out of the bag is equal. Therefore, the probability of a green ball coming can be written as,

[tex]\text{Probability of Green Ball} = 0.25[/tex]

Also, we can write the probability of not getting a green ball can also be written as,

[tex]\rm Probability(\text{Not coming Green Ball}) = P(Red\ ball)+P(Black\ ball)+P(Blue\ ball)[/tex]

                                                         [tex]=0.25+0.25+0.25\\\\=0.75[/tex]

Now, as there are only two outcomes possible, therefore, the distribution of the probability is a binomial distribution. And we know that the expected value of a binomial distribution is given as,

[tex]\rm Expected\ Value, E(x) = np[/tex]

where n is the number of trials while p represents the probability.

Now, substituting the values, we will get the expected value,

[tex]\rm Expected\ Value, E(Green\ ball) = 20 \times 0.25 = 5[/tex]

Hence, the expected value of getting a green ball out of 20 experiments with replacement is 5.

Learn more about Binomial Distribution:

https://brainly.com/question/12734585

We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.