Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
the natural length of the spring is 9 cm
Explanation:
let the natural length of the spring = L
For each of the work done, we set up an integral equation;
[tex]5.4 = \int\limits^{21-l}_{15-l} {kx} \, dx \\\\5.4 = [\frac{1}{2}kx^2 ]^{21-l}_{15-l}\\\\5.4 = \frac{k}{2} [(21-l)^2 - (15-l)^2]\\\\k = \frac{2(5.4)}{(21-l)^2 - (15-l)^2} \ \ \ -----(1)[/tex]
The second equation of work done is set up as follows;
[tex]9 = \int\limits^{27-l}_{21-l} {kx} \, dx \\\\9 = [\frac{1}{2}kx^2 ]^{27-l}_{21-l}\\\\9 = \frac{k}{2} [(27-l)^2 - (21-l)^2] \\\\k = \frac{2(9)}{(27-l)^2 - (21-l)^2} \ \ \ -----(2)[/tex]
solve equation (1) and equation (2) together;
[tex]\frac{2(9)}{(27-l)^2 - (21-l)^2} = \frac{2(5.4)}{(21-l)^2 - (15-l)^2}\\\\\frac{2(9)}{2(5.4)} = \frac{(27-l)^2 - (21-l)^2}{(21-l)^2 - (15-l)^2}\\\\\frac{9}{5.4} = \frac{(729 - 54l+ l^2) - (441-42l+ l^2)}{(441-42l+ l^2) - (225 -30l+ l^2)} \\\\\frac{9}{5.4 } = \frac{288-12l}{216-12l} \\\\\frac{9}{5.4 } =\frac{12}{12} (\frac{24-l}{18 -l})\\\\\frac{9}{5.4 } = \frac{24-l}{18 -l}\\\\9(18-l) = 5.4(24-l)\\\\162-9l = 129.6-5.4l\\\\162-129.6 = 9l - 5.4 l\\\\32.4 = 3.6 l\\\\l = \frac{32.4}{3.6} \\\\[/tex]
[tex]l = 9 \ cm[/tex]
Therefore, the natural length of the spring is 9 cm
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.