Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

You get GPS units from two manufacturers, A and B. You get 43% of your units from A and 57% of your units from B. In the past, 2% of the units from A have been defective, and 1.5% of the units from B have been defective. Assuming this holds true, if a GPS unit is found to be defective what is the probability that it came from manufacturer A (think Bayes Theorem AND round to two decimal places)

Sagot :

Answer:

0.5015 = 50.15% probability that it came from manufacturer A.

Step-by-step explanation:

Conditional Probability

We use the conditional probability formula to solve this question. It is

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]

In which

P(B|A) is the probability of event B happening, given that A happened.

[tex]P(A \cap B)[/tex] is the probability of both A and B happening.

P(A) is the probability of A happening.

In this question:

Event A: Defective

Event B: From manufacturer A.

Probability a unit is defective:

2% of 43%(from manufacturer A)

1.5% of 57%(from manufacturer B). So

[tex]P(A) = 0.02*0.43 + 0.015*0.57 = 0.01715[/tex]

Probability a unit is defective and from manufacturer A:

2% of 43%. So

[tex]P(A \cap B) = 0.02*0.43 = 0.0086[/tex]

What is the probability that it came from manufacturer A?

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.0086}{0.01715} = 0.5015[/tex]

0.5015 = 50.15% probability that it came from manufacturer A.

We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.