Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
0.5015 = 50.15% probability that it came from manufacturer A.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Defective
Event B: From manufacturer A.
Probability a unit is defective:
2% of 43%(from manufacturer A)
1.5% of 57%(from manufacturer B). So
[tex]P(A) = 0.02*0.43 + 0.015*0.57 = 0.01715[/tex]
Probability a unit is defective and from manufacturer A:
2% of 43%. So
[tex]P(A \cap B) = 0.02*0.43 = 0.0086[/tex]
What is the probability that it came from manufacturer A?
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.0086}{0.01715} = 0.5015[/tex]
0.5015 = 50.15% probability that it came from manufacturer A.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.