Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

amy shoots a 100 arrows at a target each arrow with a probability 0.2 what is the probability that at most one of her first 10 arrows hits the target

Sagot :

Answer:

0.3758 = 37.58% probability that at most one of her first 10 arrows hits the target

Step-by-step explanation:

For each shot, there are only two possible outcomes. Either they hit the target, or they do not. The probability of a shot hitting the target is independent of any other shot, which means that the binomial probability distribution is used to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

Each arrow with a probability 0.2

This means that [tex]p = 0.2[/tex]

First 10 arrows

This means that [tex]n = 10[/tex]

What is the probability that at most one of her first 10 arrows hits the target?

This is:

[tex]P(X \leq 1) = P(X = 0) + P(X = 1)[/tex]

So

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{10,0}.(0.2)^{0}.(0.8)^{10} = 0.1074[/tex]

[tex]P(X = 1) = C_{10,1}.(0.2)^{1}.(0.8)^{9} = 0.2684[/tex]

Then

[tex]P(X \leq 1) = P(X = 0) + P(X = 1) = 0.1074 + 0.2684 = 0.3758[/tex]

0.3758 = 37.58% probability that at most one of her first 10 arrows hits the target

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.