Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
Part A)
2048π/3 cubic units.
Part B)
8192π/15 units.
Step-by-step explanation:
We are given that R is the finite region bounded by the graphs of functions:
[tex]f(x)=4\sqrt{x}\text{ and } g(x)=x[/tex]
Part A)
We want to find the volume of the solid of revolution obtained when rotating R about the x-axis.
We can use the washer method, given by:
[tex]\displaystyle \pi\int_a^b[R(x)]^2-[r(x)]^2\, dx[/tex]
Where R is the outer radius and r is the inner radius.
Find the points of intersection of the two graphs:
[tex]\displaystyle \begin{aligned} 4\sqrt{x} & = x \\ 16x&= x^2 \\ x^2-16x&= 0 \\ x(x-16) & = 0 \\ x&=0 \text{ and } x=16\end{aligned}[/tex]
Hence, our limits of integration is from x = 0 to x = 16.
Since 4√x ≥ x for all values of x between [0, 16], the outer radius R is f(x) and the inner radius r is g(x). Substitute:
[tex]\displaystyle V=\pi\int_0^{16}(4\sqrt{x})^2-(x)^2\, dx[/tex]
Evaluate:
[tex]\displaystyle \begin{aligned} \displaystyle V&=\pi\int_0^{16}(4\sqrt{x})^2-(x)^2\, dx \\\\ &=\pi\int_0^{16} 16x-x^2\, dx \\\\ &=\pi\left(8x^2-\frac{1}{3}x^3\Big|_{0}^{16}\right)\\\\ &=\frac{2048\pi}{3}\text{ units}^3 \end{aligned}[/tex]
The volume is 2048π/3 cubic units.
Part B)
We want to find the volume of the solid of revolution obtained when rotating R about the y-axis.
First, rewrite each function in terms of y:
[tex]\displaystyle f(y) = \frac{y^2}{16}\text{ and } g(y) = y[/tex]
Solving for the intersection yields y = 0 and y = 16. So, our limits of integration are from y = 0 to y = 16.
The washer method for revolving about the y-axis is given by:
[tex]\displaystyle V=\pi\int_{a}^{b}[R(y)]^2-[r(y)]^2\, dy[/tex]
Since g(y) ≥ f(y) for all y in the interval [0, 16], our outer radius R is g(y) and our inner radius r is f(y). Substitute and evaluate:
[tex]\displaystyle \begin{aligned} \displaystyle V&=\pi\int_{a}^{b}[R(y)]^2-[r(y)]^2\, dy \\\\ &=\pi\int_{0}^{16} (y)^2- \left(\frac{y^2}{16}\right)^2\, dy\\\\ &=\pi\int_0^{16} y^2 - \frac{y^4}{256} \, dy \\\\ &=\pi\left(\frac{1}{3}y^3-\frac{1}{1280}y^5\Bigg|_{0}^{16}\right)\\\\ &=\frac{8192\pi}{15}\text{ units}^3\end{aligned}[/tex]
The volume is 8192π/15 cubic units.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.