Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
0.8743 = 87.43% probability that more than one accident occurs per year
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
Buchtal, a manufacturer of ceramic tiles, reports on average 3.1 job-related accidents per year.
This means that [tex]\mu = 3.1[/tex]
What is the probability that more than one accident occurs per year?
This is:
[tex]P(X > 1) = 1 - P(X \leq 1)[/tex]
In which
[tex]P(X \leq 1) = P(X = 0) + P(X = 1)[/tex]
Then
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-3.6}*(3.6)^{0}}{(0)!} = 0.0273[/tex]
[tex]P(X = 1) = \frac{e^{-3.6}*(3.6)^{1}}{(1)!} = 0.0984[/tex]
[tex]P(X \leq 1) = P(X = 0) + P(X = 1) = 0.0273 + 0.0984 = 0.1257[/tex]
[tex]P(X > 1) = 1 - P(X \leq 1) = 1 - 0.1257 = 0.8743[/tex]
0.8743 = 87.43% probability that more than one accident occurs per year
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.