Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
0.0726 = 7.26% probability that the proportion of Grammy award winners will differ from the singers proportion by greater than 4%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Suppose 49% of American singers are Grammy award winners.
This means that [tex]p = 0.49[/tex]
Sample of size 502
This means that [tex]n = 502[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.49[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.49*0.51}{502}} = 0.0223[/tex]
What is the probability that the proportion of Grammy award winners will differ from the singers proportion by greater than 4%?
Proportion below 49% - 4% = 45% or above 49% + 4% = 53%. Since the normal distribution is symmetric, these probabilities are equal, so we find one of them and multiply by 2.
Probability the proportion is below 45%
p-value of Z when X = 0.45. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.45 - 0.49}{0.0223}[/tex]
[tex]Z = -1.79[/tex]
[tex]Z = -1.79[/tex] has a p-value of 0.0363.
2*0.0363 = 0.0726
0.0726 = 7.26% probability that the proportion of Grammy award winners will differ from the singers proportion by greater than 4%
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.