Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The question is incomplete, the complete question is;
Suppose 0.377g of potassium acetate is dissolved in 250.mL of a 57.0mM aqueous solution of ammonium sulfate.
Calculate the final molarity of acetate anion in the solution. You can assume the volume of the solution doesn't change when the potassium acetate is dissolved in it.
Round your answer to 3 significant digits.
Answer:
0.0152 M
Explanation:
The equation of the reaction is;
2CH3COOK(aq) + (NH4)2SO4(aq)------> K2SO4(aq) + 2CH3COONH4(aq)
Number of moles of potassium acetate = 0.377g/98.15 g/mol = 0.0038 moles
Number of moles of ammonium sulphate = 250/1000L × 57 × 10^-3 = 0.014 moles
2 moles of potassium acetate yields 2 moles of ammonium acetate
Hence;
0.0038 moles of potassium acetate yields 0.0038 moles of ammonium acetate
Also
1 mole of potassium sulphate yields 2 moles of ammonium acetate
0.014 of potassium sulphate yields 0.014 × 2/1 = 0.028 moles of ammonium acetate
So potassium acetate is the limiting reactant.
Since 0.0038 moles of ammonium acetate is produced, the final concentration of potassium acetate is = 0.0038 moles of ammonium acetate/0.25L = 0.0152 M
Hence final concentration of acetate ions =0.0152 M
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.