Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Two spheres are rolling without slipping on a horizontal floor. They are made of different materials, but each has mass 5.00 kg and radius 0.120 m. For each the translational speed of the center of mass is 4.00 m/s. Sphere A is a uniform solid sphere and sphere B is a thin-walled, hollow sphere. Part B How much work, in joules, must be done on the solid sphere to bring it to rest? Express your answer in joules. VO AE4D ? J WA Request Answer Submit Part C How much work, in joules, must be done on the hollow sphere to bring it to rest? Express your answer in joules. Wa Request

Sagot :

Answer:

Explanation:

Moment of inertia of solid sphere = 2/5 m R²

m is mass and R is radius of sphere.

Putting the values

Moment of inertia of solid sphere I₁

Moment of inertia of hollow  sphere I₂

Kinetic energy of solid sphere ( both linear and rotational )

= 1/2 ( m v² + I₁ ω²)                [ ω is angular velocity of rotation ]

= 1/2 ( m v² + 2/5 m R² ω²)

= 1/2 ( m v² + 2/5 m v²)

=1/2 x 7 / 5 m v²

= 0.7 x 5 x 4² = 56 J .

This will be equal to work to be done to stop it.

Kinetic energy of hollow sphere ( both linear and rotational )

= 1/2 ( m v² + I₂ ω²)  [ ω is angular velocity of rotation ]

= 1/2 ( m v² + 2/3 m R² ω²)

= 1/2 ( m v² + 2/3 m v²)

=1/2 x 5 / 3 m v²

= 0.833 x 5 x 4² = 66.64 J .

This will be equal to work to be done to stop it.