Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

SCALCET8 3.9.018.MI. A spotlight on the ground shines on a wall 12 m away. If a man 2 m tall walks from the spotlight toward the building at a speed of 1.7 m/s, how fast is the length of his shadow on the building decreasing when he is 4 m from the building

Sagot :

Answer:

The length of his shadow is decreasing at a rate of 1.13 m/s

Explanation:

The ray of light hitting the ground forms a right angled triangle of height H, which is the height of the building and width, D which is the distance of the tip of the shadow from the building.

Also, the height of the man, h which is parallel to H forms a right-angled triangle of width, L which is the length of the shadow.

By similar triangles,

H/D = h/L

L = hD/H

Also, when the man is 4 m from the building, the length of his shadow is L = D - 4

So, D - 4 = hD/H

H(D - 4) = hD

H = hD/(D - 4)

Since h = 2 m and D = 12 m,

H = 2 m × 12 m/(12 m - 4 m)

H = 24 m²/8 m

H = 3 m

Since L = hD/H

and h and H are constant, differentiating L with respect to time, we have

dL/dt = d(hD/H)/dt

dL/dt = h(dD/dt)/H

Now dD/dt = velocity(speed) of man = -1.7 m/s ( negative since he is moving towards the building in the negative x - direction)

Since h = 2 m and H = 3 m,

dL/dt = h(dD/dt)/H

dL/dt = 2 m(-1.7 m/s)/3 m

dL/dt = -3.4/3 m/s

dL/dt = -1.13 m/s

So, the length of his shadow is decreasing at a rate of 1.13 m/s