Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
1.67 m
Explanation:
The potential energy change of the small ball ΔU equals the work done by the buoyant force, W
ΔU = -W
Now ΔU = mgΔh where m = mass of small ball = ρV where ρ = density of small ball and V = volume of small ball. Δh = h - h' where h = final depth of small ball and h' = initial height of small ball = 5 m. Δh = h - 5
ΔU = mgΔh
ΔU = ρVgΔh
Now, W = ρ'VgΔh' where ρ = density of water and V = volume of water displaced = volume of small ball. Δh' = h - h' where h = final depth of small ball and h' = initial depth of small ball at water surface = 0 m. Δh' = h - h' = h - 0 = h
So, ΔU = -W
ρVgΔh = -ρ'VgΔh'
ρVg(h - 5) = -ρ'Vgh
ρ(h - 5) = -ρ'h
Since the density of the small ball equals 1/2 the density of water,
ρ = ρ'/2
ρ(h - 5) = -ρ'h
(ρ'/2)(h - 5) = -ρ'h
ρ'(h - 5)/2 = -ρ'h
(h - 5)/2 = -h
h - 5 = -2h
h + 2h = 5
3h = 5
h = 5/3
h = 1.67 m
So, the maximum depth the ball reaches is 1.67 m.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.