Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
The answer is below
Explanation:
The question is not complete, but I will solve a similar question. The question goes as:
A random sample of n measurements was selected from a population with unknown mean µ and known standard deviation σ. Calculate a 90% confidence interval for n = 49, ¯ x = 28, σ = 28
Solution:
A confidence interval is a range of numbers that contains a population parameter.
C = 90% = 0.9
α = 1 - C = 1 - 0.9 = 0.1
α/2 = 0.1/2 = 0.05
The z score of α/2 is the same as the z score 0.45 (0.5 - 0.05) which is equal to 1.65. Hence, the margin of error E is:
[tex]E=z_\frac{\alpha}{2}*\frac{\sigma}{\sqrt{n} } =1.65*\frac{28}{\sqrt{49} } =6.6[/tex]
The confidence interval = [tex]\bar x \pm E=28 \pm 6.6 = (21.4,\ 34.6)[/tex]
The 90% confidence is between 21.4 and 34.6.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.