Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

An experimenter flips a coin 100 times and gets 59 heads. Find the 98% confidence interval for the probability of flipping a head with this coin.

Sagot :

Answer:

The 98% confidence interval for the probability of flipping a head with this coin is (0.4756, 0.7044).

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].

An experimenter flips a coin 100 times and gets 59 heads.

This means that [tex]n = 100, \pi = \frac{59}{100} = 0.59[/tex]

98% confidence level

So [tex]\alpha = 0.02[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.02}{2} = 0.99[/tex], so [tex]Z = 2.327[/tex].

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.59 - 2.327\sqrt{\frac{0.59*0.41}{100}} = 0.4756[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.59 + 2.327\sqrt{\frac{0.59*0.41}{100}} = 0.7044[/tex]

The 98% confidence interval for the probability of flipping a head with this coin is (0.4756, 0.7044).

Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.