Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
The problem is incomplete, but it is solved using a binomial distribution with [tex]n = 8[/tex] and [tex]p = 0.16[/tex]
Step-by-step explanation:
For each adult who regret getting tattoos, there are only two possible outcomes. Either they say that they were too young, or they do not say this. The answer of an adult is independent of other adults, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
16% say that they were too young when they got their tattoos.
This means that [tex]p = 0.16[/tex]
Eight adults who regret getting tattoos are randomly selected
This means that [tex]n = 8[/tex]
Find the indicated probability.
The binomial distribution is used, with [tex]p = 0.16, n = 8[/tex], that is:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = x) = C_{8,x}.(0.16)^{x}.(0.84)^{8-x}[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.