Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
= f6 .
IV. The sum of the first n Fibonacci numbers with even indices is
f2 + f4 + ... + f2n = f2n+1 - 1.
Proof:
From II,
f1 + f2 + f3 + ... + f2n = f2n+2 - 1.
When we subtract the result from III, we get the desired result.
Example:
f2 + f4 + f6 + f8 + f10 + f12 = 1 +3 + 8 + 21 +55 +144
= 232
= f13 - 1 .
V. The sum of all (fn+1)/ (fn )
converges to the Golden Ratio.
3/1 + 5/3 + 8/5 + 13/8 .... converges to ) / 2.
Proof that Rn converges to the Golden Ratio:
Let R = lim Rn as n approaches infinity
= lim f n+1 / f n as n approaches infinity
= lim fn + fn-1 /fn as n approaches infinity
= lim (1 + fn-1/ fn) as n approaches infinity
= 1 + lim (fn-1 /fn ) as n approaches infinity
= 1 + 1/ lim (fn-1 /fn ) as n approaches infinity
= 1 + 1/R
So, R = 1 + 1/R,
or R^2 = R + 1,
R^2 - R - 1 = 0,
R = ( ) / 2
= ( ) / 2
Since Rn is positive, Rn = ( ) / 2 .
Thus, Rn converges to the Golden Ratio.
IV. The sum of the first n Fibonacci numbers with even indices is
f2 + f4 + ... + f2n = f2n+1 - 1.
Proof:
From II,
f1 + f2 + f3 + ... + f2n = f2n+2 - 1.
When we subtract the result from III, we get the desired result.
Example:
f2 + f4 + f6 + f8 + f10 + f12 = 1 +3 + 8 + 21 +55 +144
= 232
= f13 - 1 .
V. The sum of all (fn+1)/ (fn )
converges to the Golden Ratio.
3/1 + 5/3 + 8/5 + 13/8 .... converges to ) / 2.
Proof that Rn converges to the Golden Ratio:
Let R = lim Rn as n approaches infinity
= lim f n+1 / f n as n approaches infinity
= lim fn + fn-1 /fn as n approaches infinity
= lim (1 + fn-1/ fn) as n approaches infinity
= 1 + lim (fn-1 /fn ) as n approaches infinity
= 1 + 1/ lim (fn-1 /fn ) as n approaches infinity
= 1 + 1/R
So, R = 1 + 1/R,
or R^2 = R + 1,
R^2 - R - 1 = 0,
R = ( ) / 2
= ( ) / 2
Since Rn is positive, Rn = ( ) / 2 .
Thus, Rn converges to the Golden Ratio.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.