At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

A number is selected at
random from each of the sets
£2,3,4} and {1, 3, 5}. Find the
Probability that the sum of the two numbers is greater than 3 but less than 7?

Sagot :

Answer:

0.4444 = 44.44% probability that the sum of the two numbers is greater than 3 but less than 7.

Step-by-step explanation:

A probability is the number of desired outcomes divided by the number of total outcomes.

A number is selected at random from each of the sets {2,3,4} and {1, 3, 5}.

The possible values for the sum are:

2 + 1 = 3

2 + 3 = 5

2 + 5 = 7

3 + 1 = 4

3 + 3 = 6

3 + 5 = 8

4 + 1 = 5

4 + 3 = 7

4 + 5 = 9

Find the probability that the sum of the two numbers is greater than 3 but less than 7?

​4 of the 9 sums are greater than 3 but less than 7. So

[tex]p = \frac{4}{9} = 0.4444[/tex]

0.4444 = 44.44% probability that the sum of the two numbers is greater than 3 but less than 7.