Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
[tex]c = \frac{1}{12}[/tex]
The mean of the distribution is 0.25.
The variance of the distribution is of 0.6875.
Step-by-step explanation:
Probability density function:
For it to be a probability function, the sum of the probabilities must be 1. The probabilities are 3c, 3c and 6c, so:
[tex]3c + 3c + 6c = 1[/tex]
[tex]12c = 1[/tex]
[tex]c = \frac{1}{12}[/tex]
So the probability distribution is:
[tex]P(X = -1) = 3c = 3\frac{1}{12} = \frac{1}{4} = 0.25[/tex]
[tex]P(X = 0) = 3c = 3\frac{1}{12} = \frac{1}{4} = 0.25[/tex]
[tex]P(X = 1) = 6c = 6\frac{1}{12} = \frac{1}{2} = 0.5[/tex]
Mean:
Sum of each outcome multiplied by its probability. So
[tex]E(X) = -1(0.25) + 0(0.25) + 1(0.5) = -0.25 + 0.5 = 0.25[/tex]
The mean of the distribution is 0.25.
Variance:
Sum of the difference squared between each value and the mean, multiplied by its probability. So
[tex]V^2(X) = 0.25(-1-0.25)^2 + 0.25(0 - 0.25)^2 + 0.5(1 - 0.25)^2 = 0.6875[/tex]
The variance of the distribution is of 0.6875.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.