Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

A multipurpose transformer has a secondary coil with several points at which a voltage can be extracted, giving outputs of 5.60, 12.0, and 480 V. (a) The input voltage is 220 V to a primary coil of 230 turns. What are the numbers of turns in the parts of the secondary used to produce the output voltages

Sagot :

Answer:

Explanation:

A multipurpose transformer can act as step up as well as step down transformer according to the desired setting by a user.

When the voltage at the output is greater than the voltage at the input of the transformer then it acts as step-up transformer and vice-versa acting is a step down transformer.

Given that:

input (primary) voltage of the transformer, [tex]V_i=220~V[/tex]

no. of turns in the primary coil, [tex]N_i=230[/tex]

  • When the output voltage is 5.60 V:

[tex]V_o=5.60~V[/tex]

[tex]\frac{N_i}{N_o} =\frac{V_i}{V_o}[/tex]

[tex]\frac{N_o}{230}=\frac{5.60}{220}[/tex]

[tex]N_o=5.85\approx 6[/tex] turns compensating the losses

  • When the output voltage is 12.0 V:

[tex]V_o=12.0~V[/tex]

[tex]\frac{N_i}{N_o} =\frac{V_i}{V_o}[/tex]

[tex]\frac{N_o}{230}=\frac{12.0}{220}[/tex]

[tex]N_o=12.45\approx 13[/tex] turns compensating the losses

  • When the output voltage is 480 V:

[tex]V_o=480~V[/tex]

[tex]\frac{N_i}{N_o} =\frac{V_i}{V_o}[/tex]

[tex]\frac{N_o}{230}=\frac{480}{220}[/tex]

[tex]N_o=501.8\approx 502[/tex] turns compensating the losses