Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Calculate the number of ways to form a set of three distinct items such that no two of the selected items are in the same row or same column

Sagot :

Answer:

1200

Explanation:

Order does not matter, if we said xyz order, it would still not make a difference if it was zyx or yzx hence we use the combination formula:

nCr = n! / r! * (n - r)!

where n= total number of items

r= number of items chosen at a time

Combinations are used when the order of events do not matter in calculating the outcome.

We calculate using the formula:

(30×20×12)÷3!=1200

There are therefore 1200 ways for the three distinct items to not be in same row or column

We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.