At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

A block of mass M is connected by a string and pulley to a hanging mass m.The coefficient of kinetic friction between block M and the table is 0.2, and also, M = 20 kg, m = 10 kg. Find the acceleration of the system and tensions on the string.

Sagot :

The free body diagram for the block of mass M consists of four forces:

• the block's weight, Mg, pointing downward

• the normal force of the table pushing upward on the block, also with magnitude Mg

• kinetic friction with magnitude µMg = 0.2 Mg, pointing to the left

• tension of magnitude T pulling the block to the right

For the block of mass m, there are only two forces:

• its weight, mg, pulling downward

• tension T pulling upward

The m-block will pull the M-block toward the edge of the table, so we take the right direction to be positive for the M-block, and downward to be positive for the m-block.

Newton's second law gives us

T - 0.2Mg = Ma

mg - T = ma

where a is the acceleration of either block/the system. Adding these equations together eliminates T and we can solve for a :

mg - 0.2 Mg = (m + M) a

a = (m - 0.2M) / (m + M) g

a = 1.96 m/s²

Then the tension in the string is

T = m (g - a)

T = 78.4 N

View image LammettHash