Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
[tex]\mu =2.16[/tex] --- Mean
[tex]\sigma^2 = 1.4944[/tex] -- Variance
[tex]\sigma = 1.222[/tex] --- Standard deviation
Step-by-step explanation:
Given
[tex]\begin{array}{cccccc}x & {0} & {1} & {2} & {3} & {4} \ \\ P(x) & {0.12} & {0.2} & {0.2} & {0.36} & {0.12} \ \end{array}[/tex]
Solving (a): The population mean
This is calculated as:
[tex]\mu = \sum x * P(x)[/tex]
So, we have:
[tex]\mu =0*0.12 + 1 * 0.2 + 2 * 0.2 + 3 * 0.36 + 4 * 0.12[/tex]
[tex]\mu =2.16[/tex]
Solving (b): The population variance
First, calculate:
[tex]E(x^2)[/tex] using:
[tex]E(x^2) = \sum x^2 * P(x)[/tex]
So, we have:
[tex]E(x^2) = 0^2*0.12 + 1^2 * 0.2 + 2^2 * 0.2 + 3^2 * 0.36 + 4^2 * 0.12[/tex]
[tex]E(x^2) =6.160[/tex]
So, the population variance is:
[tex]\sigma^2 = E(x^2) - \mu^2[/tex]
[tex]\sigma^2 = 6.16 - 2.160^2[/tex]
[tex]\sigma^2 = 6.160 - 4.6656[/tex]
[tex]\sigma^2 = 1.4944[/tex]
Solving (c): The population standard deviation
This is calculated as:
[tex]\sigma = \sqrt{\sigma^2}[/tex]
[tex]\sigma = \sqrt{1.4944}[/tex]
[tex]\sigma = 1.222[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.