Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
7.8% of the original volume.
Explanation:
From the given information:
Temperature [tex]T_1[/tex] = 22° C = 273 + 22 = 295° C
Pressure [tex]P_1[/tex] = 240 kPa
Temperature [tex]T_2[/tex] = 45° C
At initial temperature and pressure:
Using the ideal gas equation:
[tex]P_1V_1 =nRT_1[/tex]
making V_1 (initial volume) the subject:
[tex]V_1 = \dfrac{nRT_1}{P_1}[/tex]
[tex]V_1 = \dfrac{nR*295}{240}[/tex]
Provided the pressure maintained its rate at 240 kPa, when the temperature reached 45° C, then:
the final volume [tex]V_2[/tex] can be computed as:
[tex]V_2 = \dfrac{nR*318}{240}[/tex]
Now, the change in the volume ΔV = V₂ - V₁
[tex]\Delta V = \dfrac{nR*318}{240}- \dfrac{nR*295}{240}[/tex]
[tex]\Delta V = \dfrac{23nR}{240}[/tex]
∴
The required fraction of the volume of air to keep up the pressure at (240) kPa can be computed as:
[tex]= \dfrac{\dfrac{23nR}{240}}{ \dfrac{295nR}{240}}[/tex]
[tex]= {\dfrac{23nR}{240}} \times { \dfrac{240}{295nR}}[/tex]
[tex]= 0.078[/tex]
= 7.8% of the original volume.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.