Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
0.9484 = 94.84% probability that the sample proportion of girls will be greater than 41%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Suppose 44% of the children in a school are girls.
This means that [tex]p = 0.44[/tex]
Sample of 727 children
This means that [tex]n = 727[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.44[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.44*0.56}{727}} = 0.0184[/tex]
What is the probability that the sample proportion of girls will be greater than 41%?
This is 1 subtracted by the p-value of Z when X = 0.41. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.41 - 0.44}{0.0184}[/tex]
[tex]Z = -1.63[/tex]
[tex]Z = -1.63[/tex] has a p-value of 0.0516
1 - 0.0516 = 0.9884
0.9484 = 94.84% probability that the sample proportion of girls will be greater than 41%
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.