At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Complete question:
A wire 2.80 m in length carries a current of 5.60 A in a region where a uniform magnetic field has a magnitude of 0.300 T. Calculate the magnitude of the magnetic force on the wire assuming the following angles between the magnetic field and the current.
a) 60 ⁰
b) 90 ⁰
c) 120 ⁰
Answer:
(a) When the angle, θ = 60 ⁰, force = 4.07 N
(b) When the angle, θ = 90 ⁰, force = 4.7 N
(c) When the angle, θ = 120 ⁰, force = 4.07 N
Explanation:
Given;
length of the wire, L = 2.8 m
current carried by the wire, I = 5.6 A
magnitude of the magnetic force, F = 0.3 T
The magnitude of the magnetic force is calculated as follows;
[tex]F = BIl \ sin(\theta)[/tex]
(a) When the angle, θ = 60 ⁰
[tex]F = BIl \ sin(\theta)\\\\F = 0.3 \times 5.6 \times 2.8 \times sin(60)\\\\F = 4.07 \ N[/tex]
(b) When the angle, θ = 90 ⁰
[tex]F = BIl \ sin(\theta)\\\\F = 0.3 \times 5.6 \times 2.8 \times sin(90)\\\\F = 4.7 \ N[/tex]
(c) When the angle, θ = 120 ⁰
[tex]F = BIl \ sin(\theta)\\\\F = 0.3 \times 5.6 \times 2.8 \times sin(120)\\\\F = 4.07 \ N[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.