Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
the probability that we hit the bullseye at least 100 times is 0.0113
Step-by-step explanation:
Given the data in the question;
Binomial distribution
We find the probability of hitting the dart on the disk
⇒ Area of small disk / Area of bigger disk
⇒ πR₁² / πR₂²
given that; disk-shaped board of radius R² = 5, disk-shaped bullseye with radius R₁ = 1
so we substitute
⇒ π(1)² / π(5)² = π/π25 = 1/25 = 0.04
Since we have to hit the disk 2000 times, we represent the number of times the smaller disk ( BULLSEYE ) will be hit by X.
so
X ~ Bin( 2000, 0.04 )
n = 2000
p = 0.04
np = 2000 × 0.04 = 80
Using central limit theorem;
X ~ N( np, np( 1 - p ) )
we substitute
X ~ N( 80, 80( 1 - 0.04 ) )
X ~ N( 80, 80( 0.96 ) )
X ~ N( 80, 76.8 )
So, the probability that we hit the bullseye at least 100 times, P( X ≥ 100 ) will be;
we covert to standard normal variable
⇒ P( X ≥ [tex]\frac{100-80}{\sqrt{76.8} }[/tex] )
⇒ P( X ≥ 2.28217 )
From standard normal distribution table
P( X ≥ 2.28217 ) = 0.0113
Therefore, the probability that we hit the bullseye at least 100 times is 0.0113
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.