Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer: hello some part of your question is missing
Let v=〈−2,5〉 in R^2,and let y=〈0,3,−2〉 in R^3.
Find a unit vector u in R^2 such that u is perpendicular to v. How many such vectors are there?
answer:
One(1) unit vector ( < 5/√29, 2 /√29 > ) perpendicular to 〈−2,5〉
Step-by-step explanation:
let
u = < x , y > ∈/R^2 be perpendicular to v = < -2, 5 > ------ ( 1 )
hence :
-2x + 5y = 0
-2x = -5y
x = 5/2 y
back to equation 1
u = < 5/2y, y >
∴ || u || = y/2 √29
∧
u = < 5 /2 y * 2 / y√29 , y*2 / y√29 >
= < 5/√29, 2 /√29 > ( unit vector perpendicular to < -2, 5 > )
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.