Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Find the direction cosines and direction angles of the vector. (Give the direction angles correct to the nearest degree.) c, c, c , where c > 0

Sagot :

Answer:

cos(∝) = 1/√3

cos(β) = 1/√3

cos(γ) = 1/√3

∝ = 55°

β = 55°

γ = 55°

Step-by-step explanation:

Given the data in the question;

vector is z = < c,c,c >

the direction cosines and direction angles of the vector = ?

Cosines are the angle made with the respect to the axes.

cos(∝) = z < 1,0,0 > / |z|

so

cos(∝) = < c,c,c > < 1,0,0 > / √[c² + c² + c²] = ( c + 0 + 0 ) / √[ 3c² ]

cos(∝) = c / √[ 3c² ] = c / c√3 = 1/√3

∝ = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°

cos(β) = < c,c,c > < 0,1,0 > / √[c² + c² + c²] = ( 0 + c + 0 ) / √[ 3c² ]

cos(β) = c / √[ 3c² ] = c / c√3 = 1/√3

β = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°

cos(γ) = < c,c,c > < 0,0,1 > / √[c² + c² + c²] = ( 0 + 0 + c ) / √[ 3c² ]

cos(γ) = c / √[ 3c² ] = c / c√3 = 1/√3

γ = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°

Therefore;

cos(∝) = 1/√3

cos(β) = 1/√3

cos(γ) = 1/√3

∝ = 55°

β = 55°

γ = 55°