Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do not show that Rn(x) → 0.] Find the associated radius of convergence R. f(x) = 6(1 − x)−2 Step 1 The Maclaurin series formula is f(0) + f '(0)x + f ''(0) 2! x2 + f '''(0) 3! x3 + f (4)(0) 4! x4 + .

Sagot :

Answer:

= ∑ 6*n*x^n-1

Radius of convergence = 1

Step-by-step explanation:

f(x) = 6(1-x)^-2

Maclaurin series can be expressed using the formula

f(x) =  f(0) + f '(0)x + f ''(0)/ 2!  (x)^2 + f '''(0)/3! (x)^3 + f (4)(0) 4! x4 + .

attached below is the detailed solution

Radius of convergence = 1

The Maclaurin series for f(x) = 6 / (1 - x )^2  = ∑ 6*n*x^n-1  ( boundary ; ∞ and n = 1 )

View image batolisis
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.