Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do not show that Rn(x) → 0.] Find the associated radius of convergence R. f(x) = 6(1 − x)−2 Step 1 The Maclaurin series formula is f(0) + f '(0)x + f ''(0) 2! x2 + f '''(0) 3! x3 + f (4)(0) 4! x4 + .

Sagot :

Answer:

= ∑ 6*n*x^n-1

Radius of convergence = 1

Step-by-step explanation:

f(x) = 6(1-x)^-2

Maclaurin series can be expressed using the formula

f(x) =  f(0) + f '(0)x + f ''(0)/ 2!  (x)^2 + f '''(0)/3! (x)^3 + f (4)(0) 4! x4 + .

attached below is the detailed solution

Radius of convergence = 1

The Maclaurin series for f(x) = 6 / (1 - x )^2  = ∑ 6*n*x^n-1  ( boundary ; ∞ and n = 1 )

View image batolisis