Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Find the Taylor series for f(x) centered at the given value of a. (Assume that f has a power series expansion. Do not show that Rn(x)→0 . f(x)=lnx, a=

Sagot :

Answer:

Here we just want to find the Taylor series for f(x) = ln(x), centered at the value of a (which we do not know).

Remember that the general Taylor expansion is:

[tex]f(x) = f(a) + f'(a)*(x - a) + \frac{1}{2!}*f''(a)(x -a)^2 + ...[/tex]

for our function we have:

f'(x) =  1/x

f''(x) = -1/x^2

f'''(x) =  (1/2)*(1/x^3)

this is enough, now just let's write the series:

[tex]f(x) = ln(a) + \frac{1}{a} *(x - a) - \frac{1}{2!} *\frac{1}{a^2} *(x - a)^2 + \frac{1}{3!} *\frac{1}{2*a^3} *(x - a)^3 + ....[/tex]

This is the Taylor series to 3rd degree, you just need to change the value of a for the required value.