Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Express the function as the sum of a power series by first using partial fractions. f(x)=x+62x2−9x−5

Sagot :

Answer:

[tex]\frac{x+6}{2x^2-9x+5}=-\sum_{n=0}^{\infty} [(-2)^{n}x^{n} + \frac{x^{n}}{5^{n+1}}][/tex]

when:

[tex]|x|<\frac{1}{2}[/tex]

Step-by-step explanation:

In order to solve this problem, we must begin by splitting the function into its partial fractions, so we must first factor the denominator.

[tex]\frac{x+6}{2x^2-9x+5}=\frac{x+6}{(2x+1)(x-5)}[/tex]

Next, we can build our partial fractions, like this:

[tex]\frac{x+6}{(2x+1)(x-5)}=\frac{A}{2x+1}+\frac{B}{x-5}[/tex]

we can then add the two fraction on the right to get:

[tex]\frac{x+6}{(2x+1)(x-5)}=\frac{A(x-5)+B(2x+1)}{(2x+1)(x-5)}[/tex]

Since we need this equation to be equivalent, we can get rid of the denominators and set the numerators equal to each other, so we get:

[tex]x+6=A(x-5)+B(2x+1)[/tex]

and expand:

[tex]x+6=Ax-5A+2Bx+B[/tex]

we can now group the terms so we get:

[tex]x+6=Ax+2Bx-5A+B[/tex]

[tex]x+6=(Ax+2Bx)+(-5A+B)[/tex]

and factor:

[tex]x+6=(A+2B)x+(-5A+B)[/tex]

so we can now build a system of equations:

A+2B=1

-5A+B=6

and solve simultaneously, this one can be solved by substitution, so we get>

A=1-2B

-5(1-2B)+B=6

-5+10B+B=6

11B=11

B=1

A=1-2(1)

A=-1

So we can use these values to build our partial fractions:

[tex]\frac{x+6}{(2x+1)(x-5)}=\frac{A}{2x+1}+\frac{B}{x-5}[/tex]

[tex]\frac{x+6}{(2x+1)(x-5)}=-\frac{1}{2x+1}+\frac{1}{x-5}[/tex]

and we can now use the partial fractions to build our series. Let's start with the first fraction:

[tex]-\frac{1}{2x+1}[/tex]

We can rewrite this fraction as:

[tex]-\frac{1}{1-(-2x)}[/tex]

We can now use the following rule to build our power fraction:

[tex]\sum_{n=0}^{\infty} ar^{n} = \frac{a}{1-r}[/tex]

when |r|<1

in this case a=1 and r=-2x so:

[tex]-\frac{1}{1-(-2x)}=-\sum_{n=0}^{\infty} (-2x)^n[/tex]

or

[tex]-\frac{1}{1-(-2x)}=-\sum_{n=0}^{\infty} (-2)^{n} x^{n}[/tex]

for: |-2x|<1

or: [tex] |x|<\frac{1}{2} [/tex]

Next, we can work with the second fraction:

[tex]\frac{1}{x-5}[/tex]

On which we can factor a -5 out so we get:

[tex]-\frac{1}{5(1-\frac{x}{5})}[/tex]

In this case: a=-1/5 and r=x/5

so our series will look like this:

[tex]-\frac{1}{5(1-\frac{x}{5})}=-\frac{1}{5}\sum_{n=0}^{\infty} (\frac{x}{5})^n[/tex]

Which can be simplified to:

[tex]-\frac{1}{5(1-\frac{x}{5})}=-\sum_{n=0}^{\infty} \frac{x^n}{5^(n+1)}[/tex]

when:

[tex]|\frac{x}{5}|<1[/tex]

or

|x|<5

So we can now put all the series together to get:

[tex]\frac{x+6}{2x^2-9x+5}=-\sum_{n=0}^{\infty} [(-2)^{n}x^{n} + \frac{x^{n}}{5^{n+1}}}[/tex]

when:

[tex]|x|<\frac{1}{2}[/tex]

We use the smallest interval of convergence for x since that's the one the whole series will be defined for.