Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

In the diagram, DG ∥ EF.

On a coordinate plane, quadrilateral D E F G is shown. Point D is at (negative 2, 2), point G is at (1, 2), point F is at (3, negative 3), and point E is at (negative 4, negative 3).

What additional information would prove that DEFG is an isosceles trapezoid?

DE ≅ GF
DE ≅ DG
EF ≅ DG
EF ≅ GF


Sagot :

Answer:

[tex]DE \cong GF[/tex]

Step-by-step explanation:

Given

See attachment for quadrilateral

Required

What proves DEFG as isosceles trapezoid

The non-parallel sides of an isosceles trapezoid are similar and equal.

From the attached quadrilateral, the non-parallel sides are: DE and GF

Hence, for DEFG to be an isosceles trapezoid;

[tex]DE \cong GF[/tex]

View image MrRoyal

Answer:DE ≅ GF

Step-by-step explanation:

cause i said so

We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.