Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

We know that 1 1 − r = [infinity] n = 0 rn has interval of convergence (−1, 1). This means the series converges for |r| < 1. Therefore, the series f(x) = 1 2 + x = [infinity] n = 0 (−1)n xn 2n + 1 will converge when − x 2 < 1. Thus, what is the interval of convergence for f(x)? (Enter your answer using interval notation.)

Sagot :

Answer: hello your question is poorly written attached below is the complete question

answer :

I = ( -2, 2 )

Step-by-step explanation:

Determine the internal convergence for f(x)

given that f(x) converges at  |-x/2 | < 1

I ( internal convergence for f(x) ) = ( -2, 2 )

Attached below is the detailed solution

View image batolisis
View image batolisis