At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
59.26°
Explanation:
Since a is the acceleration of the particle B, the horizontal component of acceleration is a" = asinθ and the vertical component is a' = acosθ where θ angle between a with arrow and the positive direction of the y axis.
Now, for particle B to collide with particle A, it must move vertically the distance between A and B which is y = 31 m in time, t.
Using y = ut + 1/2a't² where u = initial velocity of particle B = 0 m/s, t = time taken for collision, a' = vertical component of particle B's acceleration = acosθ.
So, y = ut + 1/2a't²
y = 0 × t + 1/2(acosθ)t²
y = 0 + 1/2(acosθ)t²
y = 1/2(acosθ)t² (1)
Also, both particles must move the same horizontal distance to collide in time, t.
Let x be the horizontal distance,
x = vt (2)where v = velocity of particle A = 2.8 m/s and t = time for collision
Also, using x = ut + 1/2a"t² where u = initial velocity of particle B = 0 m/s, t = time taken for collision, a" = horizontal component of particle B's acceleration = asinθ.
So, x = ut + 1/2a"t²
x = 0 × t + 1/2(ainsθ)t²
x = 0 + 1/2(asinθ)t²
x = 1/2(asinθ)t² (3)
Equating (2) and (3), we have
vt = 1/2(asinθ)t² (4)
From (1) t = √[2y/(acosθ)]
Substituting t into (4), we have
v√[2y/(acosθ)] = 1/2(asinθ)(√[2y/(acosθ)])²
v√[2y/(acosθ)] = 1/2(asinθ)(2y/(acosθ)
v√[2y/(acosθ)] = ytanθ
√[2y/(acosθ)] = ytanθ/v
squaring both sides, we have
(√[2y/(acosθ)])² = (ytanθ/v)²
2y/acosθ = (ytanθ/v)²
2y/acosθ = y²tan²θ/v²
2/acosθ = ytan²θ/v²
1/cosθ = aytan²θ/2v²
Since 1/cosθ = secθ = √(1 + tan²θ) ⇒ sec²θ = 1 + tan²θ ⇒ tan²θ = sec²θ - 1
secθ = ay(sec²θ - 1)/2v²
2v²secθ = aysec²θ - ay
aysec²θ - 2v²secθ - ay = 0
Let secθ = p
ayp² - 2v²p - ay = 0
Substituting the values of a = 0.35 m/s, y = 31 m and v = 2.8 m/s into the equation, we have
ayp² - 2v²p - ay = 0
0.35 × 31p² - 2 × 2.8²p - 0.35 × 31 = 0
10.85p² - 15.68p - 10.85 = 0
dividing through by 10.85, we have
p² - 1.445p - 1 = 0
Using the quadratic formula to find p,
[tex]p = \frac{-(-1.445) +/- \sqrt{(-1.445)^{2} - 4 X 1 X (-1)}}{2 X 1} \\p = \frac{1.445 +/- \sqrt{2.088 + 4}}{2} \\p = \frac{1.445 +/- \sqrt{6.088}}{2} \\p = \frac{1.445 +/- 2.4675}{2} \\p = \frac{1.445 + 2.4675}{2} or p = \frac{1.445 - 2.4675}{2} \\p = \frac{3.9125}{2} or p = \frac{-1.0225}{2} \\p = 1.95625 or -0.51125[/tex]
Since p = secθ
secθ = 1.95625 or secθ = -0.51125
cosθ = 1/1.95625 or cosθ = 1/-0.51125
cosθ = 0.5112 or cosθ = -1.9956
Since -1 ≤ cosθ ≤ 1 we ignore the second value since it is less than -1.
So, cosθ = 0.5112
θ = cos⁻¹(0.5112)
θ = 59.26°
So, the angle between a with arrow and the positive direction of the y axis would result in a collision is 59.26°.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.