At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

The coordinator of the vertices of the triangle are (-8,8),(-8,-4), and

Sagot :

Answer with Step-by-step explanation:

Complete question:

The coordinates  of the vertices of the triangle are (-8,8),(-8,-4), and. Consider QR the base of the triangle. The measure of the base is b = 18 units, and the measure of the height is h = units. The area of triangle PQR is square units.

Let

P=(-8,8)

Q=(-8,-4)

QR=b=18 units

Height of triangle, h=Length of PQ

Distance formula

[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Using the formula

Height of triangle, h=[tex]\sqrt{(-8+8)^2+(-4-8)^2}=12units[/tex]

Area of triangle PQR=[tex]\frac{1}{2}\times base\times height[/tex]

Area of triangle PQR=[tex]\frac{1}{2}\times 18\times 12[/tex]

Area of triangle PQR=108 square units

Length of QR=18units

Let the coordinates of R(x,y)

[tex]\sqrt{(x+8)^2+(y+4)^2}=18[/tex]

[tex](x+8)^2+(y+4)^2=324[/tex]

[tex]x^2+64+16x+y^2+8y+16=324[/tex]

[tex]x^2+y^2+16x+8y=324-64-16[/tex]

[tex]x^2+y^2+16x+8y=244[/tex]   ......(1)

Using Pythagoras theorem

[tex]H=\sqrt{P^2+B^2}[/tex]

[tex]H=\sqrt{(18)^2+(12)^2}[/tex]

[tex]H=6\sqrt{13}[/tex]units

[tex](6\sqrt{13})^2=(x+8)^2+(y-8)^2[/tex]

[tex]x^2+64+16x+y^2+64-16y=468[/tex]

[tex]x^2+y^2+16x-16y=468-64-64=340[/tex]

[tex]x^2+y^2+16x-16y=340[/tex] .....(2)

Subtract equation (2) from (1) we get

[tex]24y=-96[/tex]

[tex]y=-96/24=-4[/tex]

Using the value of y in equation (1)

[tex]x^2+16x+16-32=244[/tex]

[tex]x^2+16x=244-16+32[/tex]

[tex]x^2+16x=260[/tex]

[tex]x^2+16x-260=0[/tex]

[tex]x^2+26x-10x-260=0[/tex]

[tex]x(x+26)-10(x+26)=0[/tex]

[tex](x+26)(x-10)=0[/tex]

[tex]x=-26, x=10[/tex]

Hence, the coordinate of R (10,-4) or (-26,-4).

Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.