Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
Option A
Step-by-step explanation:
If the quadrilateral ABCD is dilated by a scale factor 'k' to form quadrilateral A'B'C'D',
Scale factor = [tex]\frac{\text{Length of one side of the Image}}{\text{Length of one side of the original}}[/tex]
k = [tex]\frac{BA'}{BA}[/tex]
Distance between B(2, -5) and A(-1, -1) = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
= [tex]\sqrt{(2+1)^2+(-5+1)^2}[/tex]
= 5 units
Distance between B(2, -5) and A'(-5.5, 5) = [tex]\sqrt{(-5.5-2)^2+(5+5)^2}[/tex]
= [tex]\sqrt{(-7.5)^2+(10)^2}[/tex]
= 12.5 units
Scale factor 'k' = [tex]\frac{12.5}{5}[/tex]
k = [tex]\frac{5}{2}[/tex]
Therefore, ABCD is dilated by a scale factor [tex]\frac{5}{2}[/tex] about point B.
BA and it's image BA' are on the same line and passes through center of dilation B.
Similarly, lines CD and C'D' will be parallel because they do not pass through center of dilation.
Therefore, Option (A) will be the correct option.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.